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I. Motivation

In times where the world becomes more and more com-
plex so do simulations. Solving models analytically is
only possible for sufficient small input which only covers
the solutions of real applications. As soon as more com-
plicated models are used the computational complexity
is the limiting factor. It can be either the required mem-
ory or the needed time to solve such models, both not
acceptable to an alternative. Yet, to solve mathematical
models of numerical simulations to a satisfying level one
method yields promising results: model order reduc-
tion (MOR). The goal of MOR is to approximate the
input-to-output behaviour ∥y ´ ŷ∥ ≪ 1 while reducint
the number of system states and differential equations
r ≪ n

Fig. 1.1: Visualisation of basic concept of MOR. A
large system Σ with described with many
equations n can be reduced to a smaller
system ˆSigma with many fewer equations r.

II. Mathematical background

Mathematical models are often described with partial
differential equations (PDE) and a common way to
describe the behaviour of an input-output system is
given by

dx

dt
“ fpx, uq [II..1]

y “ gpx, uq [II..2]

with u as the system input, y the system output and x
the state variable. The higher the dimension n of the
state space vecotr x, the higher the complexity. MOR
is the reduction of the dimension of the state vector by
keeping the behaviour of the input-output relations.

Proper Orthogonal Decomposition (POD) is based on
the assumption that a limited number of deterministic
function, the POD modes, are sufficient to predict
future behaviour. If we have a vector-valued function
upx, tq over some domain of interest and time, we can
express the quantity of interest with the standard
eigenfunction expansion

u1px, tq “

∞
ÿ

k“1
akptqΦkpxq [II..3]

For each x spatial value and t time value we can cre-
ate the so-called snapshot matrix U from which the
eigenvalues and eigenvectors can be computated.

Fig. 2.1: Visualization of snapshot matrix, each new
snapshot leads to a new entry in the snapshot
matrix U as a column whereas the rows hold
the values of space.

It turns out that not all eigenvectors are needed to
reconstruct the behaviour and therefore a reduction
of the original system can be performed. The more
snapshots are into taken account, the more data is
provided and the better the time evolution of the system
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can be inspected.

III. Geometry setup

To evaluate theory on a model the following model of
a motor was used and the quantity of interest was the
magnetic flux density Φ. The numerical computation
was done with COMSOL 6.2 and the data evaluation
with Python in its latest version 3.12.3.

Fig. 3.1: 2d electrical motor model that consists of a
stator, rotor and its windings.

The model consists of a 6.0˝ degree section of a motor
with the stator as the fixed and the rotor as the moving
part. The total extension of the motor is 9.0 ˆ 101 mm
with 5.75 ˆ 101 mm as the rotor dimension. For numeri-
cal simplification the windings, air gap were simulated
as air whereas everything else was modeled in soft iron
without losses. Periodic boundary conditions were ap-
plied for the rotor and motor part and the air gap as well
as outer part of the stator are kept magnetic isolated.
The original degrees of freedom to solve in the setup
was 3.2300 ˆ 104, in total there were 6.7 ˆ 101 differ-
ent snapshots taken and the reduced matrix contains
9.379 ˆ 103 rows.

IV. Results

The following table summarizes the results of the sim-
ulation and one can already see that the first mode
dominate the system by storing more than 90 % of the
total energy.

POD eigenval acc part E

1 2.034348e+05 0.909562
2 1.954733e+04 0.996958
3 6.376754e+02 0.999809
4 3.270508e+01 0.999956

Tab. 4.0: Only 2 modes are already sufficient to cover
more than 99 % of the energy stored in the
system.

One can also compare the simulated values of the
magnetic flux density with the reconstructed values
based on the POD modes.

Fig. 4.1: Reconstructd based on POD.

As one can see, the generated valus by the POD
modes do not only qualitatively but also quantitatively
describe the systems behaviour. The rotation of the
rotor part in the simulation can be neglected for the
explanation.

V. Outlook
The current results show that the implemented linear
POD is in agreement with the unreduced model, so for
further study the next step arise naturally on focusing on
nonlinear method. Typical cases for nonlinear situations
is the extension of the nonlinear magnetization dynamic
of magnetic material as in BH curve.
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